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Abstract

Monitoring nuclear power plant operation by measuring the antineutrino flux has become an active 
research field for safeguards and non-proliferation. We describe various efforts to demonstrate the 
feasibility of reactor monitoring based on the detection of the Coherent Neutrino Nucleus Scattering 
(CNNS) process with High Purity Germanium (HPGe) technology. CNNS detection for reactor 
antineutrino energies requires lowering the electronic noise in low-capacitance kg-scale HPGe 
detectors below 100 eV as well as stringent reduction in other particle backgrounds.  Existing state-
of-the-art detectors are limited to an electronic noise of 95 eV-FWHM.  In this work, we employed 
an ultra-low capacitance point-contact detector with a commercial integrated circuit preamplifier-
on-a-chip in an ultra-low vibration mechanically cooled cryostat to achieve an electronic noise of 
39 eV-FWHM at 43 K. We also present the results of a background measurement campaign at the 
Spallation Neutron Source to select the area with sufficient low background to allow a successful 
first-time measurement of the CNNS process. 
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1.  INTRODUCTION 

This project aimed at the development, construction, and deployment of a large-mass High Purity 
Germanium (HPGe) detection system with the required ultra-low electronic noise threshold to 
demonstrate detection of reactor antineutrinos via the Coherent Neutrino Nucleus Scattering (CNNS) 
process. The coherent elastic scattering of a reactor antineutrino in a Ge detector target mass produces a 
recoiling Ge nucleus with an ionization energy smaller than 300 eV. Detecting such small signal requires 
an unprecedentedly low electronic-noise threshold not available in commercial detectors with the desired 
1kg-scale target mass. As such, reducing the electronic noise threshold of kg-scale HPGe detectors to less 
than 100 eV is an essential and enabling objective in the pursuit of reactor monitoring with Ge 
technology. 

Figure 1: Diagram representing the evolution of the project starting goals. 

Over the past decade, detection of antineutrinos to monitor nuclear power plants or to detect and monitor 
other nuclear activities related to the nuclear fission process, in close or standoff distances, has been an 
active research field, important for safeguards and non-proliferation. Other antineutrino detection systems 
rely on the inverse-beta decay process, which is characterized by a much smaller cross section than 
achievable through the CNNS process if sufficiently low energy threshold can be attained. Instead of 
large-scale and stationary detection systems, systems than rely on CNNS detection can be compact and 
potentially mobile, which could be easily incorporated into the global nuclear safeguards non-
proliferation detection regime. Power-levels and fuel composition could be potentially measured more 
effectively with the CNNS process. 

Advances in large-mass ultra-low noise HPGe technologies are also of great interest to the science 
community. In particular, experiments that will benefit from increase in detection sensitivity are those 
searching for weakly interacting particles or in general rare physics events related to weak interaction 
processes, such as the detection and characterization of the coherent neutrino nucleus scattering or the 
search for cold dark matter. 


